Solutions-Dilutions

Concentration - many ways to measure:
use a ratio to describe: $\frac{\text { stuff }}{\text { stuff }}$ solvent or solution
molarity $=\frac{\mathrm{mol}}{\mathrm{L}}$
$\%$ by mass $=\frac{\text { mass of solute }}{\text { total mass }} \times 100$
$\%$ by volume $=\frac{\text { volume of solute }}{\text { total }} \times 100$ total volume
mole fraction $=\frac{x \text { moles }}{\text { total moles }}$
mole $\%=\frac{x \text { moles }}{\text { total moles }} \times 100$
$\mathrm{ppm}=\underset{1,000,000 \text { total parts }}{\text { parts }}$
others:
molality
normality

Dilutions

combine both equations:
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \rightarrow$ reciprocal relationship -- as one goes up $\begin{aligned} & \text { the other goes down }\end{aligned}$

$$
\underset{\text { (proportional) }}{\text { linear relationships: }} \frac{\mathrm{x}_{1}}{\mathrm{y}_{1}}=\frac{\mathrm{x}_{2}}{\mathrm{y}_{2}}
$$

-as one goes up, the other goes up
A 100 mL of a 5.0 M solution of NaOH is diluted to 1.0 L . What is the molarity of the diluted solution?
M_{2} ?
units must be the same
$(5.0 \mathrm{M})(100 \mathrm{~mL})=\mathrm{M}_{2}(1000 \mathrm{~mL})$

$$
\mathrm{M}_{2}=0.5 \mathrm{M}
$$

Another example: 50.0 mL of 0.125 M CuSO 4 was added to 0.500 L of pure water. What is the final concentration of the solution?

$$
\begin{gathered}
(50.0 \mathrm{~mL})(0.125 \mathrm{M})=\left(\begin{array}{c}
50+500 \\
t^{2} \\
\left.\mathrm{M}_{2}=0.0114 \mathrm{ML}\right) \mathrm{M}_{2}
\end{array}\right.
\end{gathered}
$$

2.1 g copper sulfate hydrate is dissolved in a 250 mL volumetric flask. What is the molarity?
(mol. wt: 250g/mol)

5 mL of this solution is diluted to 500 mL . What is the molarity of this solution?

the sample goes in a cuvette

Lab:
Use Knowns to Determine Unknowns
dilute sample to several concentrations graph known concentrationd with measured \% transmittance use graph(determine line equation) to determine unknowns

If I have $20 \mathrm{~g} \mathrm{KNO}_{3}$ dissolved in 500 mL of water: 1.What is the Molarity?
2. What is the \% by mass of the solute?
3.What is the mole fraction of the solute?
4. What is the mole percent if the solute?

If I have $20 \mathrm{~g} \mathrm{KNO}_{3}$ dissolved in 500 mL of water: What is the Molarity?

$$
20 \mathrm{~g} \mathrm{KNO}_{3} \left\lvert\, \frac{1 \mathrm{~mol}}{} \begin{gathered}
101 \mathrm{~g}
\end{gathered}=0.20 \mathrm{~mol}\right.
$$

What is the \% by mass of the solute?
$1 \mathrm{~g} / \mathrm{mL} \quad \frac{20 \mathrm{~g}}{520 \mathrm{~g}} \times 100=3.85 \% \mathrm{KNO}_{3}$
What is the mole fraction of the solute?

$$
20 \mathrm{~g} \mathrm{KNO}_{3} \left\lvert\, \frac{1 \mathrm{~mol}}{101 \mathrm{~g}}=0.20 \mathrm{~mol} \mathrm{KNO}_{3}\right.
$$

$500 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \mid 1 \mathrm{~mol}, \quad 27.8 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
What is the mole percent of the solute?

$$
\frac{0.20 \mathrm{~mol}}{27.8+0.2 \mathrm{~mol}} \times 100=0.714 \% \mathrm{KNO}_{3}
$$

Lab

$$
\begin{aligned}
& \text { Dilution }_{(0.1 \mathrm{M})\left(\mathrm{mL}_{\mathrm{mL}}\right)}=(100 \mathrm{~mL}) \mathrm{M}_{2} \\
& M_{2}=0.005 \mathrm{M}
\end{aligned}
$$

Stock Solution

$$
\begin{aligned}
& 407 \mathrm{~g} / \mathrm{mol} \quad \frac{0.068 \mathrm{~g}}{} \mathrm{ImsCV}_{407 \mathrm{gVV}}=\frac{0.0000197}{\mathrm{~mol}} \\
& \frac{0.00002}{1 \mathrm{~L}}=\begin{array}{c}
2 \times 10^{-5} \mathrm{M} \\
\mathrm{cV}
\end{array} \\
& 12 \cdot m L)\left(2 \times 10^{-5} m\right)=100 \mathrm{~m} \cdot M_{2}
\end{aligned}
$$

$$
\begin{aligned}
&\left(m_{1}\right)\left(V_{1}\right)=\left(m_{2}\right)\left(V_{2}\right) \\
& 10 \mathrm{~mL}(0.00002 \mathrm{~m})=\frac{m_{2} \cdot 100 \mathrm{~mL}}{100 \mathrm{~mL}} \\
& m_{2}=\frac{10 \times 6.00002}{100} \\
& m_{2}=0.000002 \\
& \frac{(10 \mathrm{~mL})(2 \mathrm{~m})}{100 \mathrm{~mL}}=\frac{m_{2} 100 \mathrm{~mL}}{100 \mathrm{~mL}}
\end{aligned}
$$

Graph the following:

Unknown © 3.5 \% trans. what is the conc? 0.25 M
figure out how known "react" to determine how unknowns "react"

